Professional profiles (Undergraduate and graduate architects, construction engineers, civil engineers, licensed technicians) working in the construction activity interested in development of projects implementing all architectonic criteria and applicable construction energy efficiency systems.
Capability of merging strategic sustainability criteria and design using passive systems, as well as, tools for optimizing energy demand.
- Nowadays, building energy rehabilitation is one of the architecture´s objectives. For this reason, it is considered as an important concept to be taken into consideration in order to improve building performance.
- The implementation of technology, design systems and energy calculation allows analysing every single constructive solution, using climate and architecture to achieve higher comfort level of final users.
- The course introduces the maximum number of environmental parameters, the basic criteria of energy flow of buildings, design systems to develop bioclimatic architecture and ambient savings evaluation.
- The course also teaches sustainability analysis strategies, how energy works and about existing design systems that make the most of the surrounding energies.
- Additional interest is to train professionals in developing and implementing sustainability strategic criteria, in order to improve interaction with the environment and with urban and architectonic design.
BUILDING AND SURROUNDINGS. PASSIVE SYSTEMS.
1. Thermal Quality.
a. Architectonic design.
b. Passive systems.
2. Air quality.
a. Natural ventilation.
b. Noise sources.
3. Lighting quality.
a. Natural light.
4. Acoustic quality.
a. Building energy rehabilitation.
TOOLS FOR OPTIMIZATION OF ENERGY DEMAND.
1. Energy demand estimation, concepts and computer aided programs.
a. Heat transfer through building enclosure.
b. Benefits of solar radiation.
c. Internal loads demand.
d. Ventilation demand.
e. Application of the European Calculation standard 13790.
2. Calculation of energy demand.
3. Calculation of energy efficiency.
a. 3D modelling, components library and templates.
b. Data and input options.
c. Calculations and simulations.
d. Ventilation and lighting.
e. Sun and shadows.
f. Modelling of equipment and consumptions.
Presentation of existing passive systems used in buildings that bring comfort with thermal quality of air, lighting and acoustic, as well as eco-compatible architecture and sustainable urban eco-design criteria.
BUILDING AND SURROUNDINGS. PASSIVE SYSTEMS.
- Flow in construction (new construction and rehabilitation).
- Sustainable architecture. Buildings and its surroundings.
- Passive systems.
- Project examples and parameters of comfort.
- Solar control.
- Hygrothermal control.
- Project examples and parameters of comfort.
- Quality of the air, lighting and natural ventilation.
- Water saving systems.
- Project examples and parameters of comfort.
- Building performance evaluation.
- Public presentation final practical work.
TOOLS FOR OPTIMIZATION OF ENERGY DEMAND.
- Introduction to demand estimation; simulation software/programs.
- Building energy simulation using DESINGBUILDER (EnergyPluS).
- Estimation of energy demand of a standard building and solutions for enclosure optimization, solar capture/protection, natural ventilation and others passive design strategies. Energy consumption estimation through mechanical simulation of a simplified HVAC system.
- Concepts review and norms requirements.
- Enclosure heat transmission demand. Constructive systems; selection criteria depending on climatic requirements and final use of building.
- Components library. (CTE - HE).
- Solar radiation demand. Capturing and minimizing heating demand, protection in minimization of cooling requirements (CTE-HE).
- Internal loads demand and parameters of comfort, improvement analysis from an energy reduction demand and indoor comfort condition improvement point of view (RITE).
- Natural ventilation demand, minimum ventilation requirements depending on the use of the building. Assessment of the natural ventilation potential as a passive cooling system (CTE-RITE).
ECO-COMPATIBLE ARCHITECTURE AND ECO-DESIGN CRITERIA
- Materials and health.
- Materials and Life cycle analysis: water as a material.
- Materials and systems: Energy efficiency, reuse and recycling.
- Strategies for a sustained utilization of materials, indicators and examples.
- Innovative materials.
- Working with data bases. Material libraries.
- Working with natural materials.
- Developing analytical work and evaluating the possibility of implementing new innovative materials.
TRAINING ACTIVITY HOURS ATTENDANCE
Workshops 26 35
Studies and individual/group works 78 25
Presentations, communication activities 52 60
Visits to construction sites 26 100
Assessment activities 26 70
Classes combine theory content with practical exercises for a better understanding of concepts presented at each session.
Course includes debates, presentations, computer work and technical visit to construction sites and existing recognized projects/infrastructures related to the content of the course.
Faculty staff is composed by professors and active licensed professionals.
Attendance is mandatory and it is organized in 3 hours sessions during a period time of eight months.
EVALUATION SYSTEM
Individual/group work 40.0
Presenting work in front of an audience 20.0
Class attendance and participation 20.0
Exams 20.0
UN VITRUVIO ECOLÓGICO, Autores Varios, ed. Gustavo Gili 2007
CONSTRUCTION MATERIALS MANUAL, Autores Varios, ed. Birkhaüser 2007
GUÍA EDIFICACIÓN SOSTENIBLE PARA LA VIVIENDA, Autores Varios, ed. Gobierno Vasco 2006
SUSTAINABLE BUILDING TECHNICAL MANUAL, Autores Varios, ed. Green Building Council 1996
CONSTRUIR LA ARQUITECTURA, Autor: Andrea DePlazes, ed. Gustavo Pili, 2006
Real Decreto 314/2006, de 17 de marzo, por el que se aprueba el Código Técnico de la Edificación y sus modificaciones posteriores, en relación a las secciones de ahorro energético, de calidad del aire y de acústica.
`Reglamento de Instalaciones Térmicas en los Edificios (RITE)´, según el Real Decreto 1026/2007, de 20 de julio. BOE núm. 207 de 29-8-2007. `Corrección de errores del RD 1026/2007´, publicado en el BOE núm. 51 del 28-2-2008.
Guías técnicas para la Rehabilitación de la Envolvente Térmica de los Edificios. IDAE.
Guía técnica de Aprovechamiento de la luz natural en la iluminación de edificios. IDEA.
Olgyay, Víctor. Arquitectura y clima. Ed. GG
Rey Martínez, F. Javier, Velasco Gómez, Eloy. Eficiencia energética en edificios. Ed. Thomson
Solé Bonet, Josep. Aislamiento térmico en la edificación. Silva Editorial
Pinazo J.M. Manual climatización. Tomo II. (1995) ISBN 84-7721-341-0
Documentos Técnicos de Instalaciones en la Edificación (DTIEs). Ed. Atecyr.
DTIE 2.01 Calidad del ambiente térmico
DTIE 7.03 Entrada de datos a los programas LIDER y CALENER VYP
Documento de Condiciones de aceptación de Programas alternativos a LIDER y CALENER.
(Documento+ anexo). IDAE, Dirección General de Urbanismo y Política de Vivienda, abril 2007.
Manual LIDER (Versión PDF en la web del código técnico)
RD 1027/2007 Reglamento de instalaciones térmicas en edificios
Aplicaciones eficientes de lámparas. (1996).Comité Español de Iluminación (CEI), Instituto para la
Diversificación y Ahorro de la Energía (IDAE). Cuadernos de eficiencia energética en iluminación, nº 1.
Aplicaciones eficientes de luminarias. (1996).Comité Español de Iluminación (CEI), Instituto para la
Diversificación y Ahorro de la Energía (IDAE). Cuadernos de eficiencia energética en iluminación, nº 2.